80 horas
Objetivos del curso
- Descubrir las bases de datos de soporte a la decisión y toda la problemática asociada tanto a su construcción y desarrollo como a la extracción de conocimiento de las mismas y enfrentarse a un proyecto de Data Mining con los conocimientos suficientes pudiendo abordar cualquiera de sus fases de desarrollo finalidad la descripción precisa del proceso de KDD. - Entender en qué consiste el Data Mining en términos generales y aprender a aplicar la metodología CRISP-DM en un proyecto de Data Mining. - Conocer los diferentes métodos de resolución de problemas que se dan en Data Mining para ser capaces de identificar ante qué situaciones se debe utilizar cada uno de ellos. - Conocer tanto el concepto como el funcionamiento de las técnicas más importantes diseñadas para dar resolución a los problemas descriptivos y predictivos de Data Mining, así como estas deben aplicarse. - Conocer cada una de las fases de un proyecto de Data Mining, siendo capaz de aplicar los conceptos teóricos y prácticos de las técnicas de análisis de datos en la resolución de los problemas planteados en cada objetivo del proyecto.